

Ingeniería del Conocimiento

Tema 4: Búsqueda Informada (I)

Objetivos del tema

- Ubicación
 - Unidad 2: BUSQUEDA EN ESPACIO DE ESTADOS
 - Tema 4: Búsqueda Informada: Heurísticas (I)
- Objetivos generales
 - Definir búsqueda informada y entender su ámbito de aplicación en contraposición a la búsqueda ciega
 - Definir las funciones heurísticas y entender su uso en las búsquedas informadas evaluando estados en vez de explorar todos los caminos desde el estado inicial
 - Entender los algoritmos de búsqueda Primero El Mejor, especialmente el Algoritmo A*, su uso y sus limitaciones
 - Saber aplicar de cada método en función de la completitud y complejidad espacial y temporal

Contenido

- 1. Introducción
- 2. Funciones heurísticas
- 3. Búsquedas "primero el mejor"
 - 1. Búsqueda avara
 - Búsqueda A*
 - 3. Variaciones de A*
- 4. Búsquedas iterativas
 - 1. Hill Climbing
 - 2. Simulated Annealing

1. Introducción

- 2. Funciones heurísticas
- 3. Búsquedas "primero el mejor"
 - 1. Búsqueda avara
 - 2. Búsqueda A*
 - 3. Variaciones de A*
- 4. Búsquedas iterativas
 - 1. Hill Climbing
 - 2. Simulated Annealing

1. Introducción

- Búsqueda: exploración del espacio de estados por medio de la generación de sucesores de los estados explorados
 - Si se tiene conocimiento perfecto → algoritmo exacto
 - Si no se tiene conocimiento → búsqueda sin información
 - Los problemas reales están en posiciones intermedias
- Cuando se emplea información del espacio de búsqueda para evaluar el proceso y elegir que nodo del árbol de búsqueda es más prometedor para alcanzar la meta hablamos de estrategias de búsqueda
 - INFORMADAS
 - HEURÍSTICAS

(usan información disponible del problema)

 La idea es utilizar una función de evaluación (heurístico) de cada nodo (del coste de llegar de él al estado final)

1. Introducción

- Todos los problemas que trata la IA son NP-difíciles
 - Resolverlos exacta requiere búsqueda en un espacio de estados de tamaño exponencial.
 - No se sabe como evitar esa búsqueda.
 - No se espera que nadie lo consiga nunca.
 - Si existe un algoritmo rápido para resolver un problema, no consideramos que el problema requiera inteligencia
- Si un problema es NP-difícil y tenemos un algoritmo que encuentra la solución de forma rápida y <u>casi siempre</u> <u>correcta</u>, podemos considerar que el algoritmo es "inteligente".
 - Implica que la búsqueda está sujeta a error

- 1. Introducción
- 2. Funciones heurísticas
- 3. Búsquedas "primero el mejor"
 - 1. Búsqueda avara
 - 2. Búsqueda A*
 - 3. Variaciones de A*
- 4. Búsquedas iterativas
 - 1. Hill Climbing
 - 2. Simulated Annealing

Heurística (¡Eureka!):

heurístico, ca.

Artículo enmendado

(Del gr. εὐρίσκειν, hallar, inventar, y -tico).

- adj. Perteneciente o relativo a la heurística.
- f. Técnica de la indagación y del descubrimiento.
- **3.** f. Busca o investigación de documentos o fuentes históricas.
- 4. f. En algunas ciencias, manera de buscar la solución de un problema mediante métodos no rigurosos, como por tanteo, reglas empíricas, etc.

Real Academia Española @ Todos los derechos reservados

- Técnica o regla empírica que ayuda a encontrar la solución de un problema (pero que no garantiza que se encuentre)
- Criterios, métodos o principios para decidir cuál de entre varias acciones promete ser la mejor para alcanzar una determinada meta.

- Son características de los métodos heurísticos:
 - No garantizan que se encuentre una solución, aunque existan soluciones (sacrifica la completitud).
 - Si encuentran una solución, no se asegura que sea la mejor (longitud mínima o de coste óptimo).
 - En algunas ocasiones (que, en general, no se podrán determinar a priori) encontrarán una solución aceptablemente buena en un tiempo razonable.
- Se representan mediante
 - Funciones h(n)
 - Metareglas
- Las heurísticas se descubren resolviendo modelos simplificados (relajados) del problema real

- Asocia a cada estado del espacio de estados una cierta cantidad numérica que evalúa de algún modo lo prometedor que es ese estado para alcanzar un estado objetivo
- ¿Qué es "mejor" valor heurístico?
 - Si estimamos la "calidad" de un estado
 - Los estados de mayor valor heurístico son los preferidos
 - Si estimamos lo próximo que se encuentra de un estado objetivo (coste estimado del camino más barato)
 - Los estados de menor valor son los preferidos
- Ambos puntos de vista son complementarios
- Convenio: asumiremos la 2ª interpretación:
 - Valores no negativos
 - El mejor es el menor
 - Los objetivos tienen valor heurístico 0

Ejemplo: 8-puzzle

- Restricciones:
 - 1. Una ficha solo se puede mover al hueco
 - 2. Una ficha solo se puede mover a casillas adyacentes horizontales o verticales
 - 3. En cada paso, se intercambian los contenidos de dos casillas
- Relajaciones:
 - Si quitamos 1, 2 y 3, heurística h₁:
 <u>número de casillas mal colocadas</u> respecto al objetivo
 - Es la heurística más sencilla y parece bastante intuitiva
 - No usa información relativa al esfuerzo (nº de movimientos) necesario para llevar una ficha a su sitio

- Si quitamos 1, heurística h₂:
 <u>suma de las distancias de las fichas a sus posiciones</u> en el objetivo
 - Como no hay movimientos en diagonal, se sumarán las distancias horizontales y verticales
 - Distancia de Manhattan distancia taxi: número de cuadros desde el sitio correcto de cada cuadro excluyendo la vacía

$$|(x_f-x_i)| + |(y_f-y_i)|$$

Ejemplo

5	4		1	2	3
6	1	8	8		4
7	3	2	7	6	5

- Solución
 - h₁: 8
 - h_2 : 2+3+3+2+4+2+0+2 = 18

- Sin embargo, estas dos heurísticas no dan importancia a la dificultad de la inversión de fichas
 - Si 2 fichas están dispuestas de forma contigua y han de intercambiar sus posiciones, ponerlas en su sitio supone (bastante) más de 2 movimientos
 - Heurística h₃: <u>doble del nº de pares de fichas a "invertir entre</u> <u>sí"</u>
 - Tampoco es buena porque se centra solo en un cierto tipo de dificultad sin considerar el problema general
 - En particular, tendrán valor 0 muchos estados que no son el objetivo
- Se suelen usar heurísticas compuestas

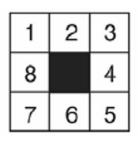
$$h_4 = h_2 + h_3$$

Mejor heurística pero requiere más cálculo

Heurística dominante

- $h_i(n)$ es <u>dominante</u> si para un problema dado $h_i(n) \ge h_h(n) \ \forall h \ \forall n$
- Si h₂ ≥ h₁ ∀n → h₂ (domina a/esta mas informada que) h₁
 - La dominación se traduce en eficiencia: un heurístico dominante expande menos nodos
 - La distancia de Manhattan esta mas informada que la heurística de numero de casillas mal colocadas

1	3	
8	2	4
7	6	5



$$h_1 = 2$$

 $h_2 = 2$
 $h_3 = 0$

$$h_1 = 2$$

 $h_2 = 2$
 $h_3 = 2$

Dominante
$$\langle h_4 = 4 \rangle$$

Reales = 2

Reales > 10

1	2	3
8		4
7	6	5

Estado objetivo

					H1	H2	Н3	H4
	2	8	3					
	1	6	4		6	6	0	6
		7	5					
	2	8	3			4	0	4
	1		4		3			
	7	6	5					
	2	8	3		6	6	0	6
	1	6	4					
	7	5						

- En general, los métodos heurísticos son preferibles a los métodos no informados en la solución de problemas difíciles para los que una búsqueda exhaustiva necesitaría un tiempo demasiado grande.
- Es necesario un compromiso entre el coste de la función heurística y la mejora que supone en la búsqueda
- Es preferible usar una función heurística dominante siempre y cuando sea admisible

 Ejemplo: el coste de resolver el puzzle de las 8 piezas mediante las estrategias de búsqueda por profundización iterativa y A* con heurísticos h₁ y h₂

- d = 14
 - profundización iterativa → 3.473.941 nodos
 - A* con $h1 \rightarrow 539$ nodos
 - A* con $h2 \rightarrow 113$ nodos
- d = 24
 - profundización iterativa → !demasiados nodos!
 - A* con $h1 \rightarrow 39.135$ nodos
 - A* con $h2 \rightarrow 1.641$ nodos

- Búsquedas heurísticas o informadas
 - Primero el mejor (PEM o best-first)
 - Búsqueda avara/voraz (greedy search)
 - Búsqueda A*
 - Variaciones de A*
 - Mejora iterativa
 - Métodos de gradiente (hill-climbing)
 - Simulated annealing
 - Búsqueda con adversarios
 - Búsqueda MiniMax con decisiones imperfectas
 - Poda Alfa-Beta
 - Búsqueda con restricciones

- 1. Introducción
- 2. Funciones heurísticas
- 3. Búsquedas "primero el mejor"
 - 1. Búsqueda avara
 - Búsqueda A*
 - Variaciones de A*
- 4. Búsquedas iterativas
 - 1. Hill Climbing
 - 2. Simulated Annealing

3. Búsquedas "primero el mejor"

- Se utiliza una <u>función de evaluación f(n)</u> para cada nodo y se expande el nodo mejor evaluado no expandido
 - Misma idea que en la búsqueda de coste uniforme:
 - Cola con prioridad, mantiene continuamente la frontera con orden creciente de f(n)
 - Se expande el nodo que parece mejor según f(n) (aunque es una función inexacta)
- La <u>función heurística h(n)</u> es el coste estimado del camino más barato desde n al objetivo
 - Condición: Si n es un nodo objetivo entonces h(n) = 0
- Válido cuando lo que interesa es encontrar el camino completo, no la solución en si.

3. Búsquedas "primero el mejor"

Tipos de búsquedas PEM:

- Búsqueda en anchura
 - f(n) = profundidad(n) minima
- Búsqueda de coste uniforme (Dijkstra)
 - f(n) = g(n) minima

Ya hemos visto estas búsquedas NO HEURISTICAS al ver los métodos NO INFORMADOS

- Búsqueda voraz o avara (greedy search)
 - f(n) = h(n) minima
- Búsqueda A*
 - f(n) = g(n) + h(n) minima
- Variaciones del A* que funcionan acotando el uso de memoria

- f(n) estima el coste del nodo n hasta la meta, con lo que se expande el nodo NO EXPANDIDO que parece estar más cerca de la meta
- f(n) es directamente la función heurística h(n) del estado f(n) = h(n)
 - h puede ser cualquier función siempre y cuando h(n) = 0 en los nodos que representan estados objetivo

Propiedades:

- Completa: No, en general. Si, si se aplican políticas de poda de bucles.
- Complejidad tiempo: O(b^d) hay que recorrer todos los nodos
- Complejidad espacio: O(b^d) hay que recorrer todos los nodos
- Optima: No

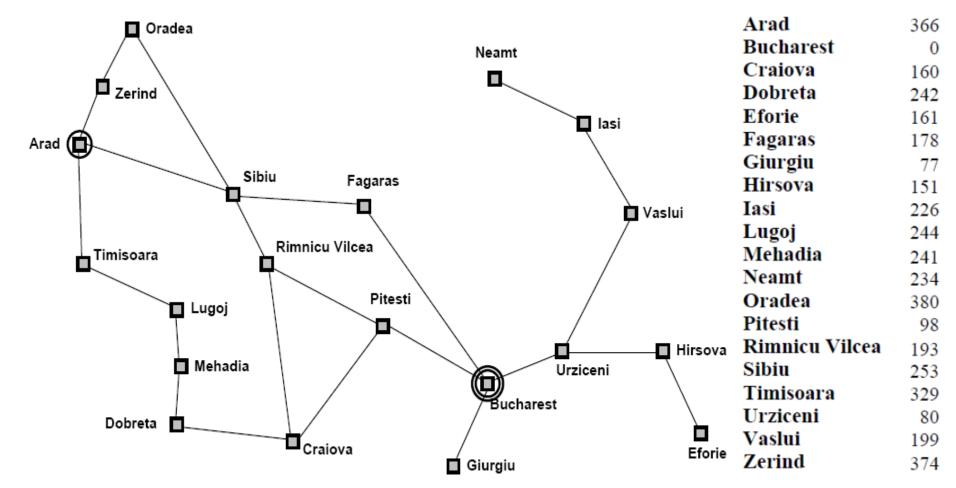
- La búsqueda voraz:
 - es propensa a comienzos erróneos
 - como la búsqueda primero en profundidad, no es completa ni óptima
 - prefiere seguir un camino hasta el final
 - puede atascarse en bucles infinitos
- Las complejidades temporal y espacial pueden reducirse sustancialmente con un buen heurístico.

iiUna mala heurística es peor que una mala búsqueda!!


```
PROCEDIMIENTO VORAZ(Estado-inicial, Estado-Final)
    *ABIERTO* = *ESTADO-INICIAL*
    Hacer *CERRADO* vacío
    BUCLE (Repetir el proceso mientras ABIERTO ≠ vacío)
       1. NODO-ACTUAL = EXTRAE-PRIMERO(ABIERTO)
       Poner NODO-ACTUAL en *CERRADO*
       3. Si ES-ESTADO-FINAL(ESTADO(NODO-ACTUAL))
               devolver CAMINO(NODO-ACTUAL)
       4. Si no, FUNCION SUCESORES(NODO-ACTUAL)
               GESTIONA-COLA(ABIERTO, SUCESORES)
               Si no están en *ABIERTO* o *CERRADO* añadir *SUCESORES*
               ordenadamente a ABIERTO en orden creciente de h(n)
    FIN DE BUCLE
    Devuelve FALLO 😣
```

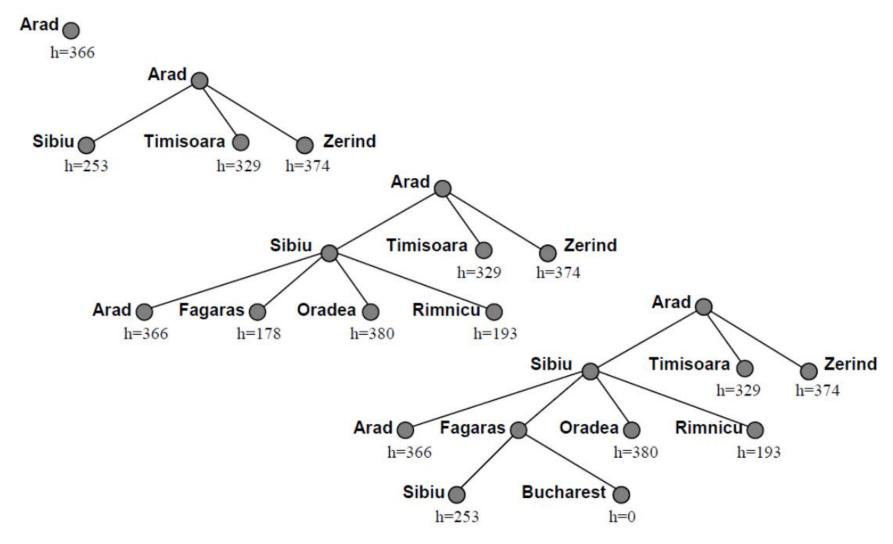

- El problema del viaje por Rumanía.
 - Estado inicial: estamos en una ciudad.
 - Estado meta: quiere viajar a otra ciudad por la mejor ruta posible (la más corta)
 - Medios: Las ciudades colindantes están unidas por carreteras; se dispone de un mapa con la disposición de las provincias y sus "coordenadas" en kilómetros respecto al "centro"
- F(n): asignar a cada nodo la distancia aérea (en línea recta) con el estado objetivo (distancia euclídea entre las coordenadas de dos ciudades).
 - Se elige una ciudad como siguiente en el camino cuando la distancia aérea a la meta sea la menor.

$$f(n) = h(n)$$
 mínima

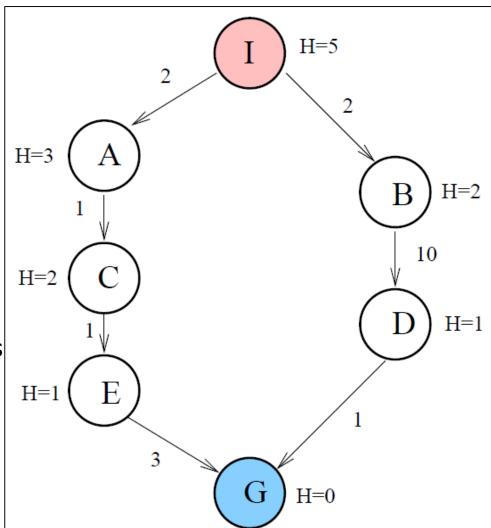


Distancias a Bucarest en Km (línea recta)

- Para el problema de hallar una ruta entre Arad y Bucarest, la búsqueda voraz con el heurístico h_{DLR}(n):
 - encuentra una solución sin expandir ningún nodo que no este incluido en la misma (coste de búsqueda mínimo),
 - aunque la solución no es óptima
- $h_{DLR}(n)$: (Distancia en Línea Recta)
 - necesita de las coordenadas de las ciudades del mapa
 - es útil porque sabemos que las carreteras entre dos ciudades tienden a ser rectas (conocimiento especifico del problema)



- PROBLEMA: NO se encuentra la solución óptima
 - Solución encontrada por búsqueda voraz: I-B-D-G
 - Causa: no se han tenido en cuenta los costes de los caminos ya recorridos



- Hart, Nilsson y Raphael, 1968
- Búsqueda A*
 - Evita expandir caminos que ya son muy costosos minimizando el costo estimado total de la solución.
 - Combina:
 - la búsqueda voraz, que minimiza el coste al objetivo h(n)
 - Búsqueda en profundidad
 - la búsqueda de coste uniforme, que minimiza el coste acumulado g(n)
 - Búsqueda en anchura
- Expande primero el nodo no expandido más prometedor hasta ese momento según la Función de Evaluación:

$$f(n) = g(n) + h(n)$$

Donde

- f(n): función de evaluación
 - Coste estimado total hasta la meta pasando por n.
 - Expresa el mínimo estimado de la solución que pasa por el nodo n
- g(n): función de coste para ir desde el nodo inicial al actual
- h(n): función heurística que mide la distancia (o coste)
 <u>estimada</u> desde n a algún nodo meta
- Los valores reales solo se conocen al final de la búsqueda
 - h*(n): coste real para ir del nodo n a algún nodo meta
 - f*(n): coste real para ir del nodo inicial a algún nodo meta a través de n
 - g(n) si se conoce y se calcula como la suma de los costes de los arcos recorridos, $k(n_i, n_i)$

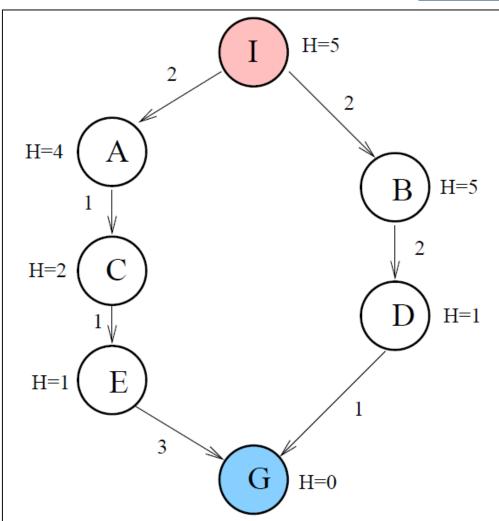
$$f^*(n) = g(n) + h^*(n)$$

Heurística admisible

- Como no conocemos el valor h* usamos una función de estimación a la que llamamos h_i(n) que será <u>admisible</u> si h*(n) ≥ h(n) ∀n
- El coste de una solución óptima en un problema relajado es una heurística admisible para el problema original
- Pero si h no es admisible, entonces A* es simplemente A
 (esto es importante)

- La heurística controla el comportamiento de A*.
 - $h(n) = 0 \ \forall n$: **Búsqueda Dijkstra**. Solamente g(n) importa.
 - Garantiza encontrar el camino más corto
 - $h(n) \le h^*(n) \ \forall n$: **Búsqueda** A^* . h(n) admisible.
 - Optimista: Subestima el coste real de llegar al objetivo
 - Garantiza encontrar el camino más corto.
 - Cuanto menor sea h(n), más nodos expande A*, haciéndolo más lento. Por eso interesa que h sea dominante (lo más alta posible pero admisible)
 - h(n) = h*(n) ∀n: Búsqueda A*.
 - Seguirá el mejor camino y nunca expandirá ningún otro nodo, por lo que A* es muy rápido.
 - $h(n) > h^*(n)$ para algún n: **Búsqueda A**. h(n) no admisible.
 - No está garantizado que A* encuentre el camino más corto, pero el algoritmo puede correr más rápido.
 - $h(n) >> g(n) \forall n$: **Búsqueda Avara**. Solamente h(n) importa

- PROBLEMA: NO se encuentra la solución óptima
 - Solución encontrada por A*:
 I-A-C-E-G
 - Causa: la heurística sobrestima el coste real en B



Heurística consistente

Una heurística h(n) es consistente si h(padre) ≤ h(hijo) + k(padre, hijo) ∀n

consistente -> admisible

 Si h(n) es admisible y consistente entonces f(n), a lo largo de cualquier camino, no disminuye (es monótona no decreciente)

En el nodo inicial,

```
- g(inicial)=0

f(inicial) = h(inicial)

f*(inicial) = h*(inicial)
```

- Como además $h(inicial) \le h*(inicial)$ $f(inicial) \le f*(inicial)$

En el nodo final,

```
- h(final) = 0
f(final) = g(final)
```

- Como además h*(inicial) = g(final)
f(final) = f*(inicial)

Luego

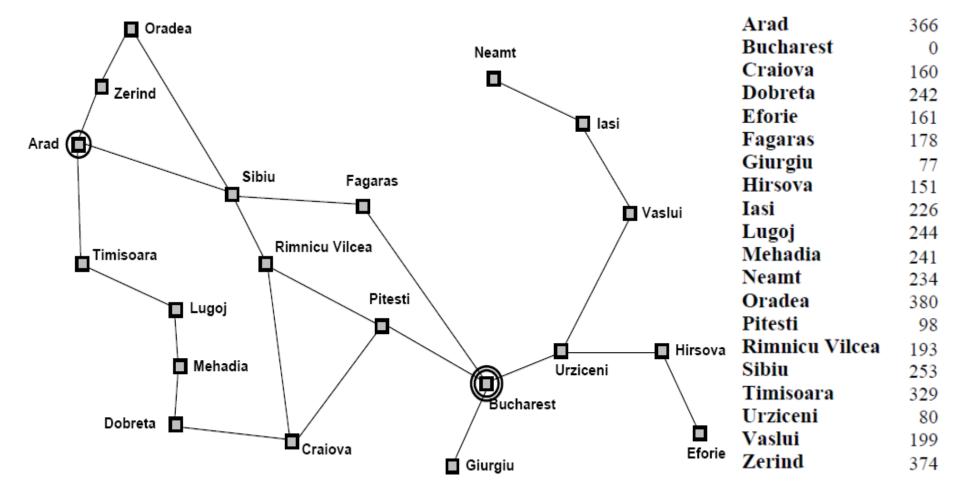
$$f(inicial) \leq f(final)$$

- La secuencia de nodos expandidos por A* estará en orden no decreciente de f(n)
 - El primer nodo expandido cada vez debe ser una solución óptima, ya que todos los posteriores serán al menos tan costosos
 - No revisita nodos. La primera expansión es la mejor
- Si f* es el coste de la solución óptima, entonces
 - A* expande todos los nodos con $f(n) < f^*$
 - A* puede expandir algunos nodos situados sobre "la curva de nivel objetivo" (donde $f(n) = f^*$) antes de seleccionar un nodo objetivo
 - A* no expande ningún nodo con $f(n) > f^*$ (poda)

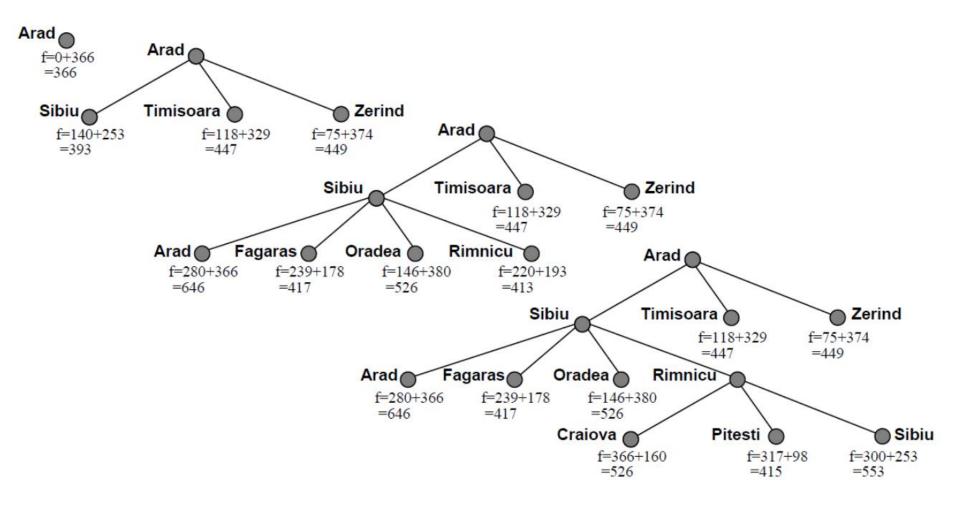
El problema del viaje por Rumanía:

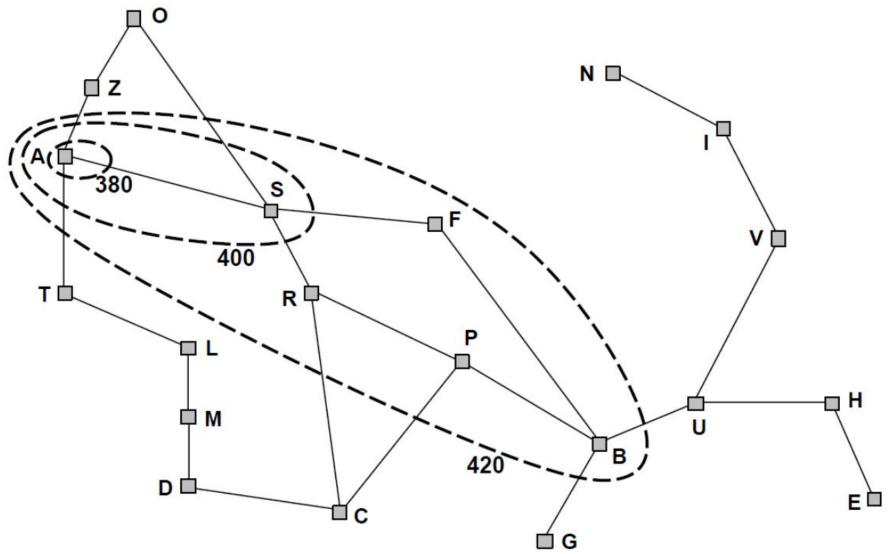
- F(n): asignar a cada nodo la distancia desde el origen + la distancia en línea recta al estado objetivo.
 - Se elige una ciudad como siguiente en el camino cuando la suma de la distancia por carretera a la ciudad actual más la distancia aérea a la meta sea la menor.

$$f(n) = g(n) + h(n)$$
 mínima



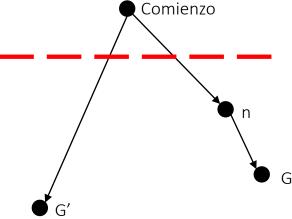
Distancias a Bucarest en Km (línea recta)





- Si ...
 - h es admisible
 - El número de sucesores de n (b) es finito $\forall n$
 - $k(n_i, n_i) \ge 0$ en todo arco
- entonces A* es:
 - Completa: Si, si existe solución la encuentra
 - Complejidad tiempo: O(b^d)
 - Complejidad espacio: O(b^d)
 - Optima: Si
 - A* es además óptimamente eficiente
 - Ningún otro algoritmo óptimo expande menos nodos para cualquier heurístico
 - Lo hemos visto al discutir la consistencia de las heurísticas

- Supongamos que se ha generado un objetivo subóptimo (G') y que está en la cola
- Sea n un nodo no expandido en el camino más corto al objetivo óptimo G

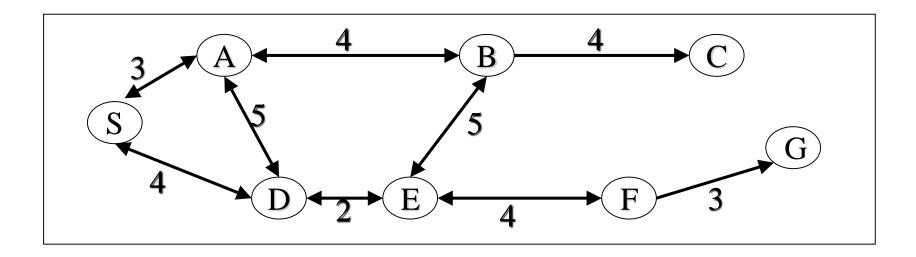


$$f(G') = g(G')$$
 ya que $h(G') = 0$
 $f(G) = g(G)$ ya que $h(G) = 0$
 $f(G') > f(G)$ ya que G' no es óptimo
 $f(G') \ge f(n)$ ya que G' no es consistente

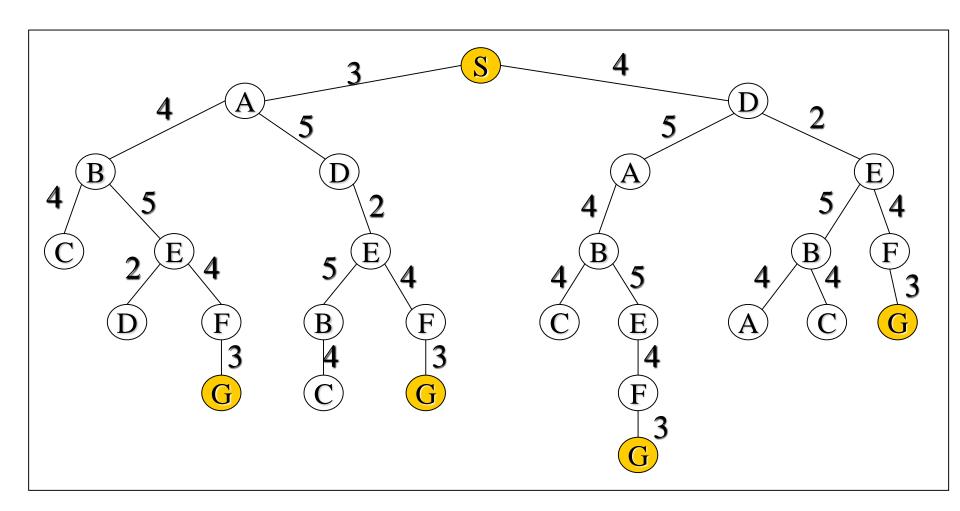
Por lo que A* no expandirá G' antes de alcanzar G


```
PROCEDIMIENTO A-STAR(Estado-inicial, Estado-Final)
    *ABIERTO* = *ESTADO-INICIAL*
    Hacer *CERRADO* vacío
    BUCLE (Repetir el proceso mientras ABIERTO ≠ vacío)
       1. NODO-ACTUAL = EXTRAE-PRIMERO(ABIERTO)
       Poner NODO-ACTUAL en *CERRADO*
       3. Si ES-ESTADO-FINAL(ESTADO(NODO-ACTUAL))
               devolver CAMINO(NODO-ACTUAL)
       4. Si no, FUNCION SUCESORES(NODO-ACTUAL)
               5. Si SUCESOR ya está en *CERRADO*,
                       Si g(SUCESOR) es menor, insertar ordenadamente en *ABIERTO*
                               Actualizar coste y camino
               Si SUCESOR ya está en *ABIERTO*,
                       Si g(SUCESOR) es menor, actualizar coste, posición y camino
               7. GESTIONA-COLA(ABIERTO, SUCESORES) Añadir *SUCESORES* a *ABIERTO*
                  en orden creciente de f(n)
    FIN DE BUCLE
    Devuelve FALLO (3)
```

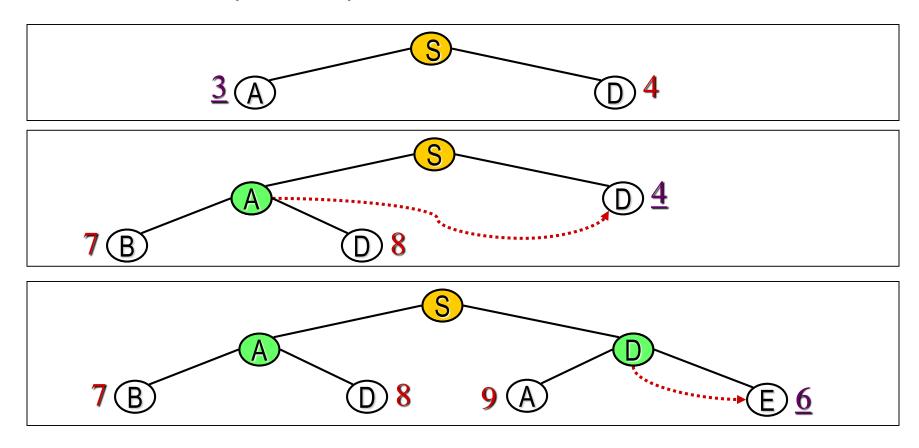

Ejemplo: sea el siguiente grafo

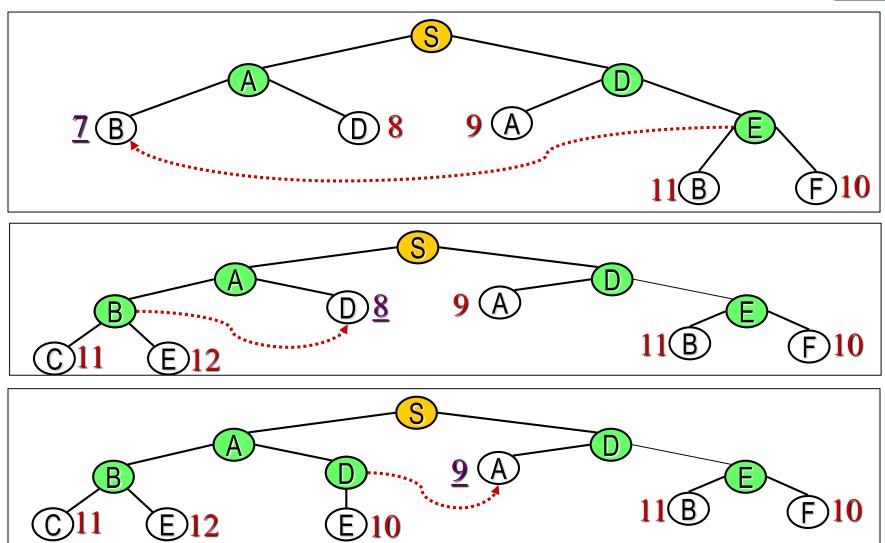


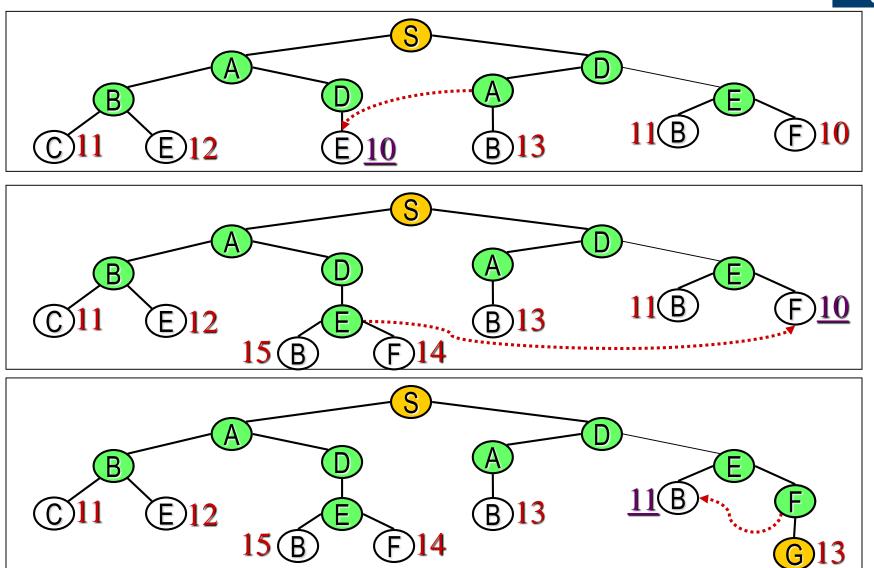
Que genera este árbol

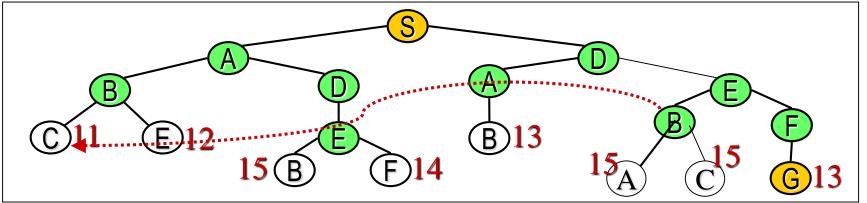


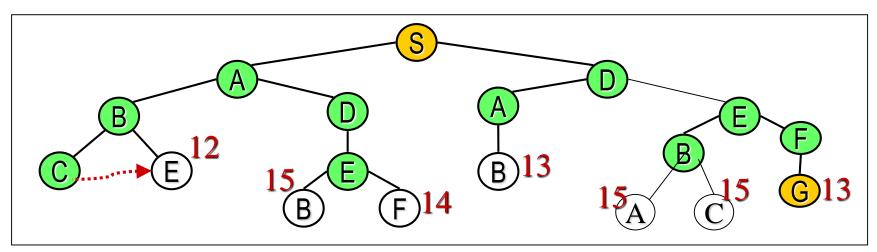
Resolución por Búsqueda de Coste Uniforme

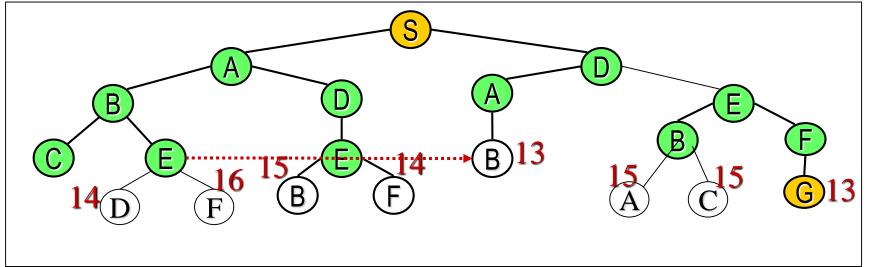


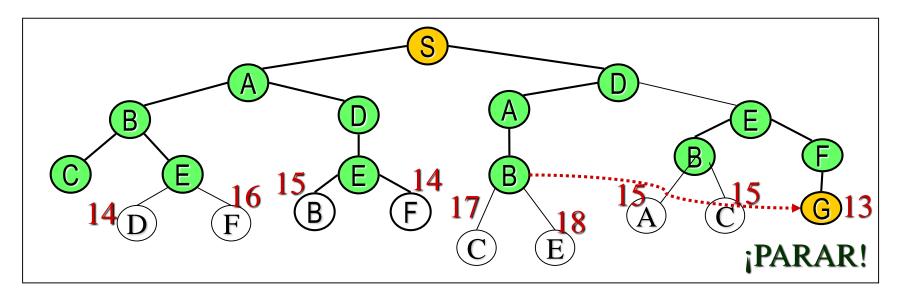




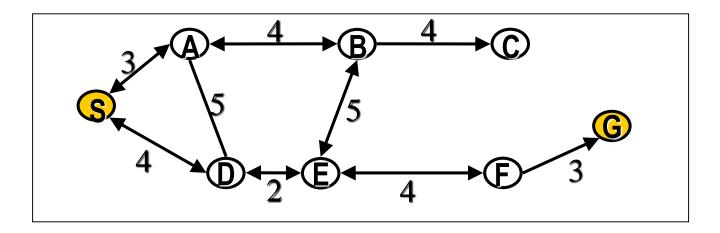


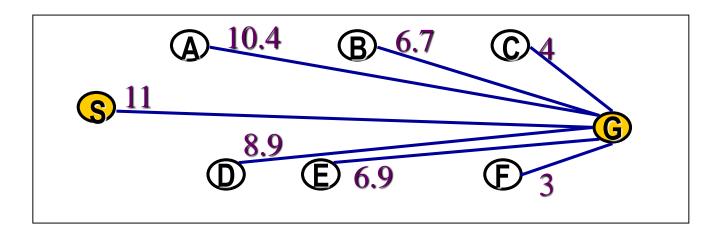


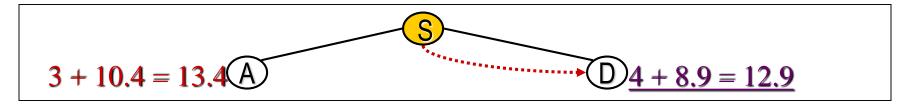


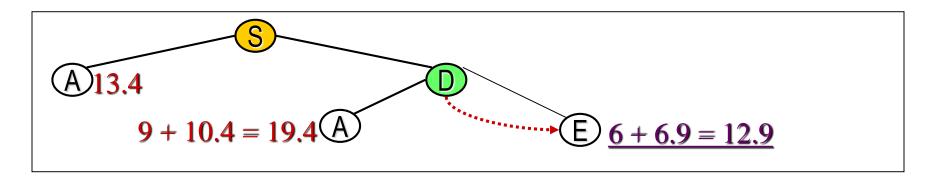


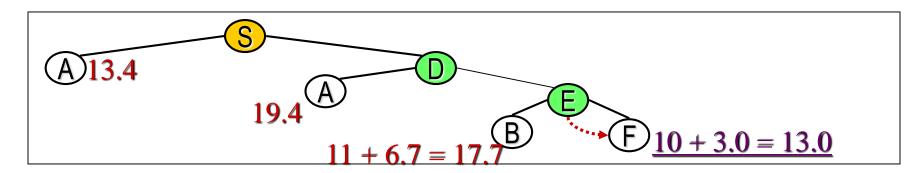
Reconsiderar el problema incluyendo la heurística h_{DLR}

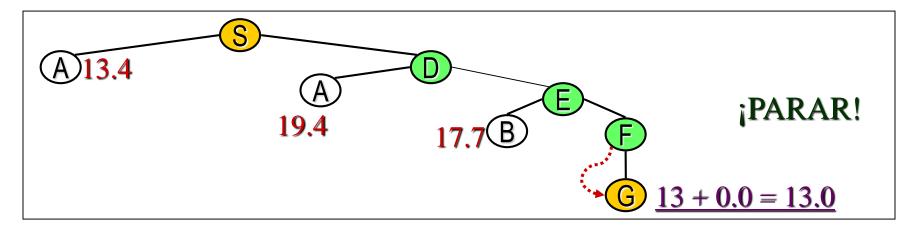












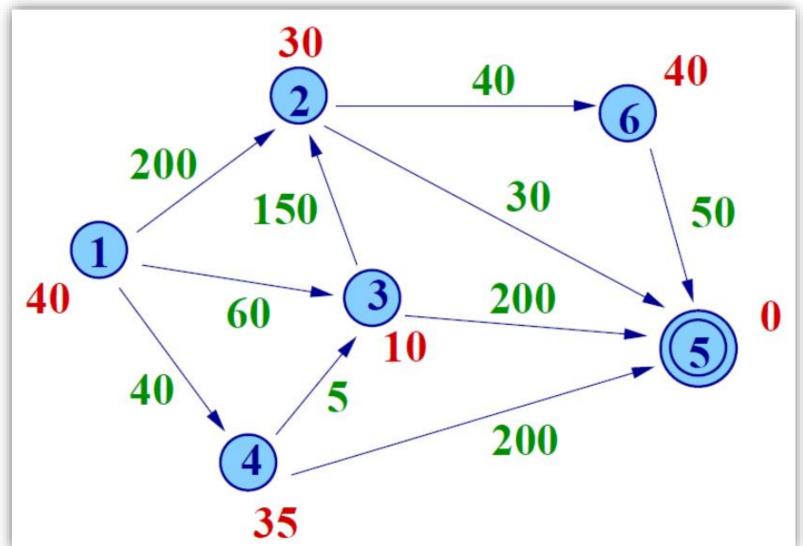
- Algoritmos que mejoran A* acotando la memoria:
 - IDA*: A* con Profundidad Iterativa (Iterative Deepening A*)
 - MA*: A* con Memoria acotada (Memory Bounded A*)
 - SMA*: A*M Simplificada (Simplified Memory Bounded A*)
 - Si al generar un sucesor falta memoria, se libera el espacio de los nodos de abiertos menos prometedores
 - RTA*: A* en Tiempo Real (Korf, 1988)

IDA*: A* con Profundidad Iterativa (Korf, 1985)

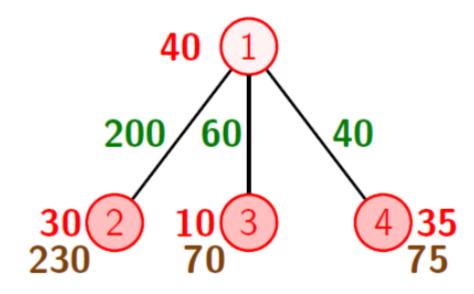
- Similar a la búsqueda ciega en Profundidad Iterativa
- Expande todos los nodos cuyo coste f(n) no excede un determinado valor
- η (coste de corte): valor mínimo de la función de coste en todos los nodos visitados pero NO expandidos
 - Iteración 1: $\eta_1 = h_0(nodo\ inicial)$
 - Expandir nodos según A* hasta que f(nodos_sucesores)> η
 - Si no es META,
 - Nueva iteración
 - Nuevo η sobre el conjunto de nodos todavía no expandidos

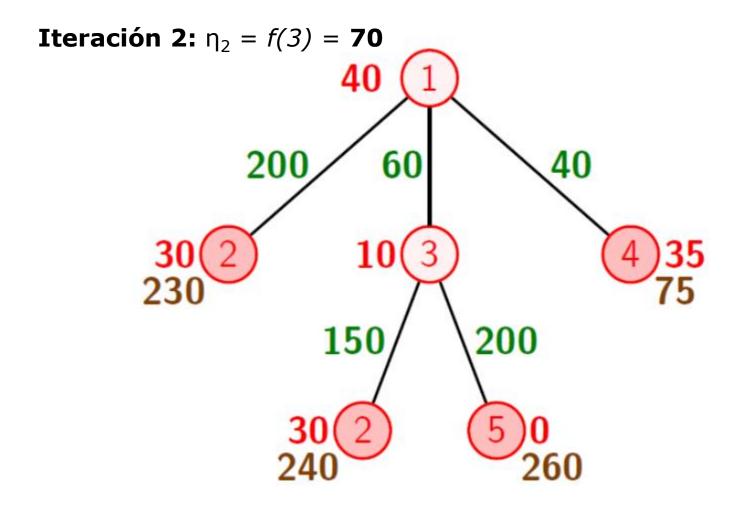
$$\eta = \min_{i=1,n} \{f(i)\} = \min_{i=1,n} \{g(i) + h(i)\}$$

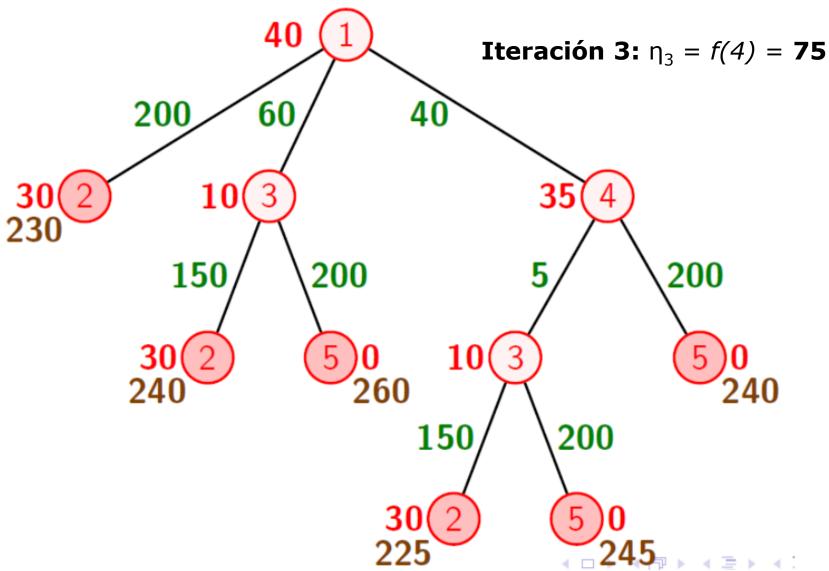
Repetir iteración

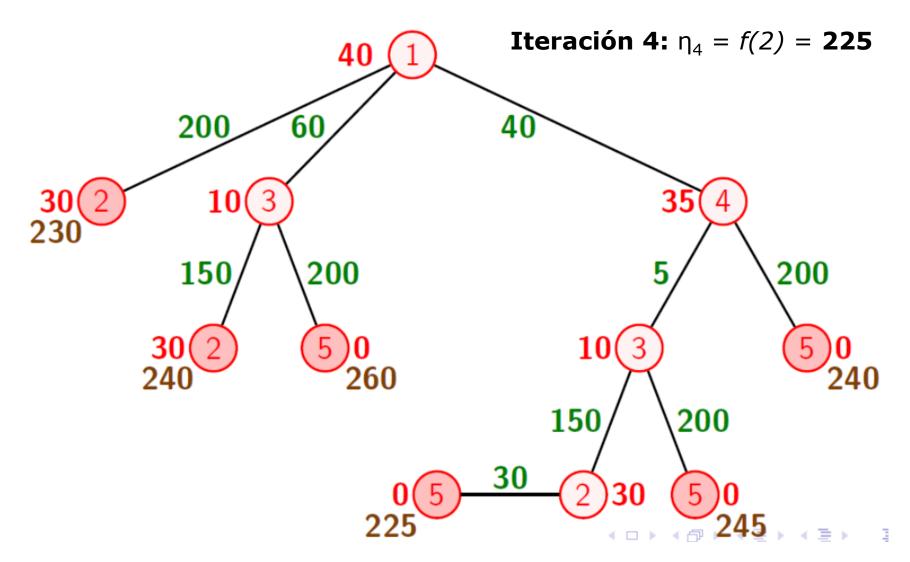


Iteración 1: $\eta_1 = h(1) = 40$









- Propiedades
 - Completitud: es completo (encuentra solución si existe)
 - Complejidad tiempo: O(b^d) Exponencial
 - Complejidad espacio: O(b*d) lineal en la profundidad del árbol de búsqueda
 - Optima: Si. Es admisible y por lo tanto, encuentra la solución óptima
 - Aunque pudiera parecer lo contrario, el numero de reexpansiones es solo mayor en un pequeño factor que el numero de expansiones de los algoritmos PEM
- Fue el primer algoritmo que resolvió óptimamente 100 casos generados aleatoriamente en el 15-puzzle

- 1. Introducción
- 2. Funciones heurísticas
- 3. Búsquedas "primero el mejor"
 - 1. Búsqueda avara
 - 2. Búsqueda A*
 - 3. Variaciones de A*
- 4. Búsquedas iterativas
 - 1. Hill Climbing
 - 2. Simulated Annealing

- Se usan cuando solo interesa el objetivo final
 - NO importa el camino ni su coste (iini se calcula!!)
 - 8-reinas, planificación, rutas...
- Reemplazan a las técnicas de búsqueda exhaustiva de forma eficiente
 - Comienzan con la configuración completa y hacen modificaciones para mejorar la calidad de la solución
 - No suelen almacenar caminos y buscan desde el estado actual hacia vecinos → algoritmos de búsqueda local
 - Lo típico es que no encuentran la mejor solución, pero pueden encontrar una solución aceptable.
- Ventajas
 - usan poca memoria
 - funcionan en problemas continuos inmensamente grandes

Uso en problemas de optimización

Búsqueda de los valores óptimos para los parámetros de un sistema que minimicen la función de coste

Buscan valles o picos en el paisaje formado por la función de coste

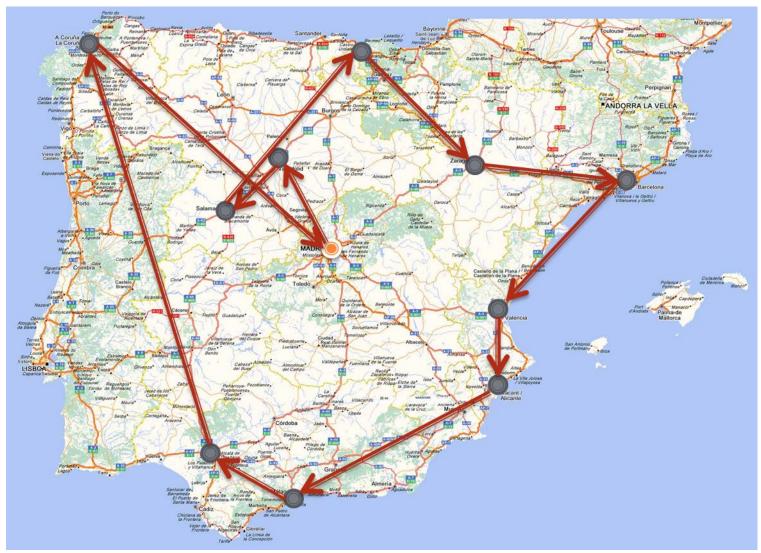
Ejemplo: TSP

- Un comerciante debe recorrer N ciudades, sin repetir ninguna, y volver a la ciudad de partida, en la mínima distancia.
- El número de posibles rutas viene dado por permutaciones sin repetición (N!)
- Para 2 ciudades (A, B), podemos hacer 2 recorridos:

$$(1) A \rightarrow B \rightarrow A$$

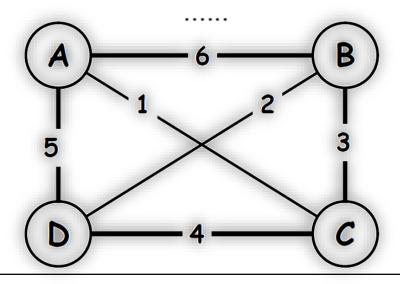
(2)
$$B \rightarrow A \rightarrow B$$

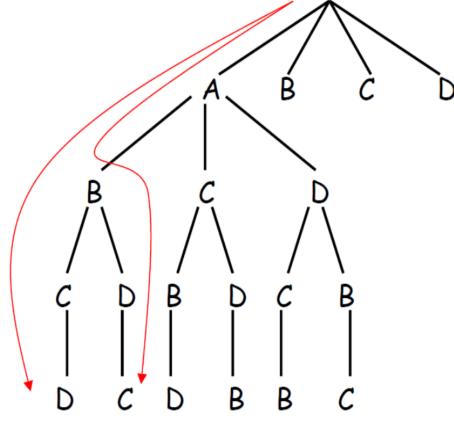
El resultado depende de la ciudad de partida



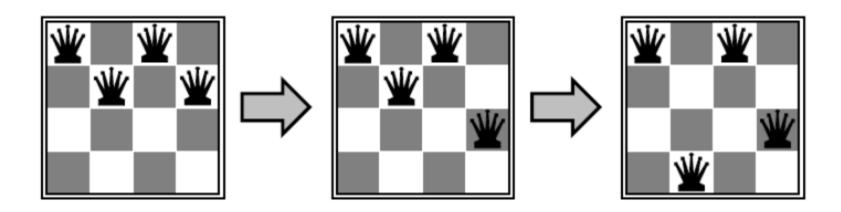
 La generación de las posibles soluciones se lleva a cabo por orden alfabético de ciudades

- 1. A-B-C-D
- 2. A-B-D-C
- 3. A-C-B-D
- 4. A-C-D-B



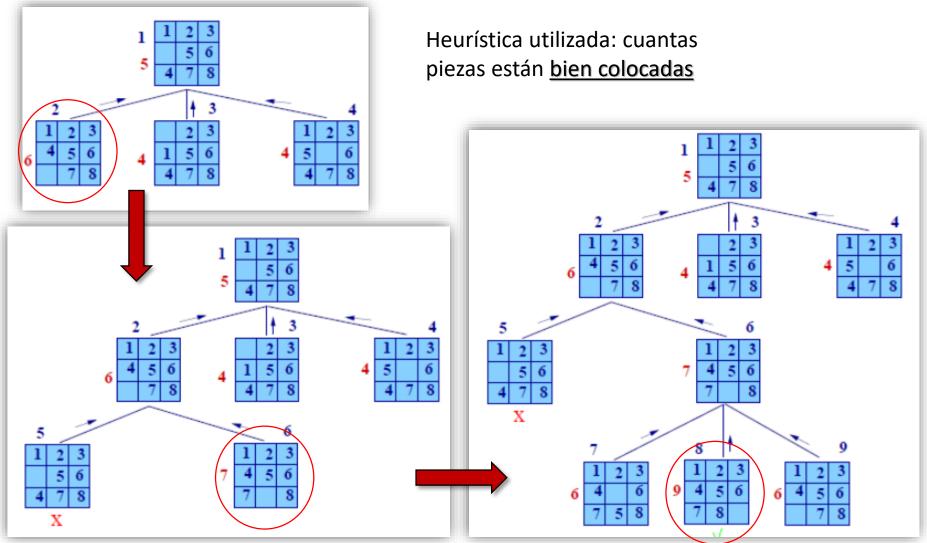


Otro ejemplo: Problema de las 8 reinas



- Tipos de búsquedas iterativas
 - Optimización evolutiva
 - Algoritmos genéticos
 - Redes neuronales
 - Redes de Hopfield
 - Ya hemos visto estas búsquedas NO HEURISTICAS al ver la IA SUBSIMBÓLICA
 - Ascenso de gradiente (Hill climbing)
 - Simulated Annealing
 - Métodos de MonteCarlo
 - Máquina de Boltzmann

- Se llaman de escalada (o de ascensión a la colina) porque tratan de elegir en cada paso un estado cuyo <u>valor</u> <u>heurístico sea mejor</u> que el del estado activo en ese momento
 - Avanza al sucesor que maximice la función de evaluación
 - "muévete siempre a un estado mejor si es posible"
- Búsqueda "avara" local (no respecto al estado final)
- Suele funcionar bien, pero tiene problemas con la terminación
 - El proceso termina cuando en un estado dado, al aplicar todos los operadores ninguno de los estados resultantes es mejor
 - Puede atascarse en máximos locales, según el estado inicial

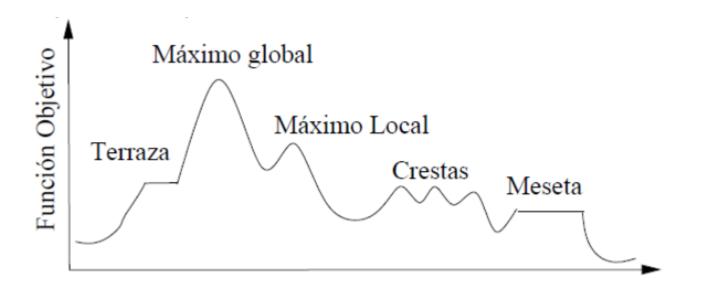


Propiedades

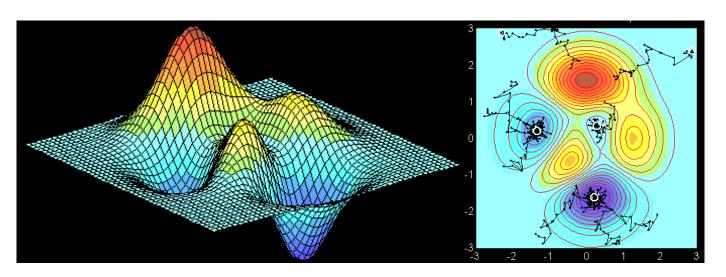
- Completitud: no tiene porque encontrar la solución
- Admisibilidad: no siendo completo, aún menos será admisible
- Eficiencia: rápido y útil si la función es monótona (de)creciente

Problemas

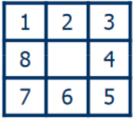
- Máximos (o mínimos) locales: pico que es más alto que cada uno de sus estados vecinos, pero más bajo que el máximo global
- Mesetas: zona del espacio de estados con función de evaluación plana
- Crestas: zona del espacio de estados con varios máximos (mínimos) locales



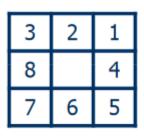
Espacio de Estados unidimensional



Espacio de Estados tridimensional



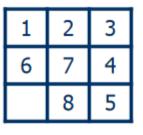
objetivo



E_{máximo local}

Máximo local

Todos los movimientos empeoran el valor de la función heurística.



E_{meseta}

Meseta

Todos los movimientos dejan igual el valor de la función heurística.

- Variantes (mejoran el problema del óptimo local)
 - Movimiento aleatorio entre ascendentes → retroceso
 - Volver a comenzar la búsqueda
 reinicio aleatorio
 - Empeoramiento de la solución actual

- Un modo de evitar que la búsqueda local finalice en óptimos locales es permitir que algunos movimientos sean hacia soluciones peores
- Pero si la búsqueda está avanzando realmente hacia una buena solución, estos movimientos de escape deben realizarse de un modo controlado
- Técnicas
 - Algoritmos Genéticos
 - Simulated Annealing
 - Desarrollado en 1993 para modelado de procesos físicos
 - Basado en el proceso metalúrgico de recalentamiento o "templado" (como las espadas)

Algoritmo de búsqueda con un criterio probabilístico de aceptación de soluciones basado en Termodinámica

- Combina ascensión de colinas con movimientos aleatorios
- Busca unir eficacia y completitud para alcanzar el óptimo absoluto
 - La idea es escapar de los máximos locales permitiendo movimientos "incorrectos" (saltos hacia soluciones peores)
 - Controlando la frecuencia de estos movimientos mediante una <u>función de probabilidad</u> que reducirá gradualmente el tamaño y frecuencia de los saltos conforme avanza la búsqueda (y por tanto estamos más cerca, previsiblemente, del óptimo)
 - Acabando en un hill climbing normal.

- En cada iteración se genera un número de vecinos
- Probabilidad de salto: Depende de la diferencia de coste entre la solución actual y la vecina (ΔΕ) y la Temperatura (T), según una distribución de Boltzmann

$$h(\Delta E, T) = \frac{1}{1 + e^{\frac{\Delta E}{cT}}}$$

- Si ΔE < 0 (la solución vecina es mejor que la actual) se acepta el movimiento ya que conduce a un estado de menos energía
- Si ΔE >0 (la solución vecina es peor) se puede aceptar el movimiento con más probabilidad cuanto mayor sea T
 - "<u>calienta</u>" → salto. Aumenta la probabilidad de aceptar una solución peor
 - "enfría" → ascensión. Disminuye la probabilidad de aceptar una solución peor

